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Abstract

The effective conductivity of binary metallic mixtures depends upon the concentration (c) of metallic mixtures and conductivity ratio (α). The
binary metallic mixtures exist in a variety of shapes and sizes. No single theory can be expected to cover all the concentration and conductivity
ranges. In the present work, a model has been proposed including both constant isotherms based unit cell approach and Bessel function based semi-
empirical field solution approach. The non-dimensional effective conductivity (K) of macroscopically heterogeneous and anisotropic mixtures
has been investigated. Another important aspect of the model is that it covers all ranges of concentration and conductivity ratio. The effect
of concentration (c) on variable height of inclusion (h) has been studied. A comparison of the model has been made with two extreme bounds
(parallel and series) and other well-known models, which gives a reasonable agreement. The model has also been compared with experimental data
of various binary metallic mixtures such as Bi–Bi2Pb, Bismuth–Tin, Mg2Pb–Pb, Cadmium–Lead, Copper–Ferrous, Cu2Sb–Sb, and Antimony–
Lead. The conductivity estimated by the model for binary metallic mixtures is within 8% deviation from the experimental values.
© 2006 Elsevier Masson SAS. All rights reserved.

Keywords: Effective conductivity; Unit-cell approach; Field solution approach; Macroscopically heterogeneous; Anisotropic; Variable height of inclusion in the
unit cell
1. Introduction

The problem of estimating the conductivity of binary mix-
tures has attracted attention for almost a century. Only a few
theories have been suggested and out of these only few have
been compared with experiments. The Maxwell solution [1]
is the starting point to find out the effective conductivity of
the mixtures, but it is only valid for vanishingly small concen-
tration of the dispersed phase. Lord Rayleigh [2] analyzed a
cubical lattice with equal sized spheres at the corners. Brugge-
man [3] proposed a model, to consider the properties of a com-
posite medium with concentration greater than zero. Hashin
and Shtrikman [4] proposed the most restrictive bounds for the
value of effective conductivity. Zehner and Schlunder [5] pro-
posed another model with particles in contact with each other
and considering the effect of secondary parameters. An impor-
tant failing in the Schlunder approach is that the deformation
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is taken only as a function of concentration, not as a func-
tion of the conductivity ratio. Series [6,7] and asymptotic [8]
approaches for several regular arrays of spheres have been pro-
posed. Raghavan and Martin [9] proposed a unit cell model that
agreed exactly with field solutions and provided the basis for a
fundamentally correct approach in the modeling of conductiv-
ity. The thermal conductivity of particles wetted with a binary
mixture and packed beds of such particles has been investi-
gated both theoretically and experimentally [10]. Hsiau [11]
developed a correlation based on the kinetic theory of gases
to estimate the effective thermal conductivity of binary mixture
of granular materials. On the basis of the mean approximation
method, the effective thermal conductivity of fibrous composite
materials has been carried out by Barta [12]. Turian [13] devel-
oped a correlation based on the extrapolation and least square
fitting to find out the thermal conductivity of coal-water mix-
tures. A two-dimensional steady state model to simulate the
thermal behavior of copper and super alloy matrix composites
has been carried out by Alcaraz Moreno [14].

The primary parameters influencing the effective conductiv-
ity of the binary metallic mixtures are conductivity ratio (α) and
concentration (c). At present, there is no satisfactory solution
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Nomenclature

c volume concentration of dispersed phase
h variable height of inclusion in the unit cell
K non-dimensional effective conductivity = keff/kcon
keff effective conductivity of binary system . . W/mK
kcon conductivity of continuous phase . . . . . . . . W/mK
kdis conductivity of dispersed phase . . . . . . . . . W/mK
Kexp experimental non-dimensional conductivity
Kmax maximum non-dimensional conductivity
Kmin minimum non-dimensional conductivity
Kpre predicted non-dimensional conductivity
KRM non-dimensional conductivity based on

Raghavan–Martin model

KZBS non-dimensional conductivity based on
Zehner–Schlunder model

KBrug non-dimensional conductivity based on Bruggeman
model

m, f , x parametric constants

Greek symbols

α ratio of conductivities = kdis/kcon, 0 < α < ∞
β transformed ratio of conductivities

= (α − 1)/(α + 2), −0.5 < β < 1
BesselM[i, j ] modified Bessel function of order i and

argument j
for all ranges of α and c, because the neighbour interactions
on the field produced higher order effects, which is difficult
to model. In addition to the primary parameters there are sec-
ondary effects influencing the effective conductivity such as
contact resistance, radiation, convection and Knudsen effect
and also parameters like particle size, shape, location, size dis-
tribution, and orientation.

The above researchers have proposed models which do not
take into account the wide range of α and c. Recognizing the
need for an engineering solution and realizing that a solution
may lie in isolating higher order interactions from the Maxwell
interactions; modeling of Maxwell interactions in the simple
way, a two-way approach to estimate the effective conductiv-
ity of binary mixtures is adopted here. In this paper a novel
approach to predict the effective conductivity of binary mix-
tures based on the unit cell approach (constant isotherms) as
well as on the semi-empirical field solution approach has been
attempted. The model has been validated with experimental re-
sults for different binary mixtures and it predicts effective con-
ductivity more accurately than the earlier proposed models.

2. Analytical model

The unit cell with a particle inclusion height ‘h’ as the equiv-
alent representation of the binary mixtures is considered. It can
be varying if the disperse medium concentration increases or
decreases. The geometrical meaning of height of inclusion “h”
is shown in Fig. 1. The earliest model of the unit cube described
by Krischer [15]. The unit cell approach is based on the resis-
tance approach (Ohms law model). The effective conductivity
of binary metallic mixtures is determined by considering equiv-
alent electrical resistances in parallel and series approach. It
is assumed that the heat flow is one-dimensional and also the
isotherms are straight and parallel to the direction of heat flow.
The equivalent thermal network for binary mixtures based on
constant isotherms is shown in Fig. 2.

The upper and lower limits to the conductivity of two-
phase materials described by Wiener [16]. Raghavan and Mar-
tin [9] developed a unit cell model to calculate the conductiv-
ity based on parallel lines of heat flux. For systems, α < 20,
Fig. 1. Geometrical representation of height of inclusion in the unit cell.

Fig. 2. Equivalent thermal network for binary mixtures.

0.1 � c � 0.9, based on the resistance approach, the effective
conductivity under the conditions of constant isotherms is given
by

K = 1 + 3βch

h + β[3c(1 − h) − h] (1)

The inclusion height ‘h’ may be expressed in terms of K , β

and c

h = 3βc(K − 1)

3βc − (1 − 3βc − β)(K − 1)
(2)
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The ‘h’ is estimated by averaging it over the two most restric-
tive bounds proposed by Hashin and Shtrikman [4] and is given
by

h =
∫ Kmax
Kmin

3βc(K−1)
3βc−(1−3βc−β)(K−1)

dK

Kmax − Kmin
(3)

where

Kmax = (1 + 2β)(1 + 2βc − β)

(1 − β)(1 − βc + 2β)
and Kmin = 1 + 2βc

1 − βc

Integrating Eq. (3), we obtain

h(β, c) = −1

ζ
+ 1

ζ 2�
log

[
1 − ζ(Kmin − 1)

1 − ζ(Kmax − 1)

]
(4)

where ζ = (1 − β − 3βc)/(3βc) and � = Kmax − Kmin.
The effective conductivity in terms of ζ and h is given by

K = 1 + h(β, c)

1 + ζh(β, c)
(5)

The effective conductivity estimated from Eq. (5) shows
large deviations from the actual values for higher values of α

(>20) because of higher order effects and higher distortions of
the flow lines. We propose a new correlation based on the field
solution approach for higher values of α (>20). In the present
work, a special case of binary metallic mixtures was considered.
The composition of the mixtures has been assumed as one mix-
ture being embedded in the other mixture in a spherical shape.
Each sphere is in contact with six neighbours of mixture in the
horizontal plane and the mixture above and below the vertical
plane. It has been assumed that the conductivity of continuous
medium is higher than the disperse medium conductivity of the
mixture. So isotherms in the spheres intersect with the surface
of the sphere at right angles. An approximate analytical solu-
tion to the steady state energy equation has been obtained for
the idealized geometry.

The field solution approach is a result of Laplace’s equations
for the temperature field in the mixtures to obtain the effective
conductivity. The energy balance can be applied to the differ-
ential volume between adjacent isotherms to yield an ordinary
differential equation for the surface temperature and also ob-
tained the expression for effective conductivity in terms of con-
centration (c) and conductivity ratio (α). The effective thermal
conductivity of packed beds based on field solution approach
has carried out by Dietz [17]. One of the major limitations of
his expression was there is no dependency on the concentration
of the dispersed phase. In the proposed correlation (modified
field solution approach) the equation is based on concentration
and conductivity ratio has been carried out [18]. A new function
G(f,α) is defined for predicting the effective conductivity. The
differential equation in terms of concentration and conductiv-
ity ratio has been formulated and solved by using mathematica
software to obtain the correlation. Here Bessel K[n,m] is the
modified Bessel function of order ‘n’ and argument ‘m’. In the
proposed correlation, the function G(f,α) incorporates both
concentration and conductivity ratio. The equation can be valid
if the conductivity ratio kdisp/kcon � 1 then K is a function of
G(f,α), If kdisp/kcon = 1 then K is a function of G(f,1).
The function G(f,α) is defined as:

G(f,α)

= cm
{
f xα

((√ 2
f α

BesselK
[
0,

√
8

f α

]

+ BesselK
[
2,

√
8

f α

])/
BesselK

[
1,

√
8

f α

] − 1
)}

(6)

For the parameters m, f and x, the respective expressions are
given in following paragraphs. Also, a limiting condition is de-
fined as:

y = Limit
c→1

[
G(f,α) − G(f,1)

]
(7)

The effective conductivity for higher value of α is given by

K = 1 + α

y

[
G(f,α) − G(f,1)

]
(8)

For the functions m, f and x, the best fitting parameters are
used and expressions are assigned as follows:

For 20 � α � 100, 0.1 � c � 0.9, we have m = 2, x = 1.12
and f = �(1 + 2c/1 − c), where, � = 1.5 − 0.03155α +
0.000167α2.

For 100 � α � 1000, 0.1 � c � 0.9, we have, m = 2, x =
1 + 2κ/(13 + κ)κ and � = 100/α25(κ−1), where, κ = α/100.
For α � 1000 and moderate concentrations of the dispersed
phase, we have, m → 0, x → 1, f → 0.141663 and K → G

(f,α).
The proposed correlation for the effective conductivity of bi-

nary mixtures incorporates the Maxwell and the phase-inverted
Maxwell solution in the concentration regions 0 � c � 0.1 and
0.9 � c � 1.0 respectively. So, for any value of α, the correla-
tions for the effective conductivity for the given concentration
regions are expressed as:

for 0 � c � 0.1, K = 1 + 2βc

1 − βc
(9)

for 0.9 � c � 1.0, K = (1 + 2β)(1 − β + 2βc)

(1 − β)(1 + 2β − βc)
(10)

The effect of concentration (c) on variable height of inclu-
sion (h) has been studied. The quantity h has a physical signif-
icance that when it increases, the spacing between the particles
in adjacent unit cells in the direction of the heat flow becomes
smaller and the resistance to the heat flow decreases; so the
conductivity of mixtures increases. The conductivity ratio (α)

varying from 0 to infinity, if α tends to infinity or β = 1 (infi-
nitely conducting inclusions), the model is same as the parallel
approach. If α tends to 0 or β = −0.5 (non-conducting inclu-
sions), the model will become the series approach. For zero
distortions of flux lines, the concentration tends to zero then
inclusion height in the unit cell (h) tends to zero and β tends
to zero then the effect of variable height of inclusion in the unit
cell (h) approach to hMaxwell.

3. Results and discussion

The effective conductivity of various types of binary metal-
lic mixtures has been estimated using the proposed model.
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Fig. 3. Non-dimensional effective conductivity as a function of concentration
of dispersed. phase for Bismuth–Tin system (α = 8.64).

Fig. 4. Non-dimensional effective conductivity as a function of concentration
of dispersed phase for Cadmium–Lead system (α = 0.3542).

A comparison has been made with two extreme bounds (par-
allel and series) [6,7], and also with the predictions of stan-
dard models like the Maxwell [1], Bruggeman [3], Zehner and
Schlunder [5], and Raghavan–Martin [9]. The variation of non–
dimensional conductivity, K with concentration for Bismuth–
Tin system with α = 8.64 is shown in Fig. 3. A binary metal-
lic mixture, Cadmium–Lead system (α = 0.3542) in which,
disperse medium conductivity is poorer than the continuous
medium for which the variation of K with the concentration is
shown in Fig. 4. The K ranges from unity to infinity while the
concentration ranging from zero and unity. It is evident that for
α > 1, a higher value of K has been predicted than Maxwell
whereas a lower value than the Maxwell for α < 1. The vari-
ation of h with c for transformed conductivity ratio, β > 0
(Bismuth–Tin) and for β < 0 (Cadmium–Lead) are shown in
Figs. 5 and 6. The elongation or contraction of the unit cell is
due to higher order interactions in the mixtures. The present
work line decreases initially, because of use the Maxwell equa-
tion at lower concentration (Fig. 6).

The experimental data for various binary metallic mixtures
have been reported in earlier published literatures [19–23] and
consider for the comparison with the model. The electrical con-
ductivity of binary metallic mixtures investigated by Landauer
[24]. The analogy of electrical conductivity has been adopted
to estimate the effective conductivity of binary metallic sys-
tems. The K has been estimated for binary metallic mixtures
such as Bi–Bi2Pb, Bismuth–Tin, Cadmium–Lead, Mg2Pb–Pb,
Copper–Ferrous, Cu2Sb–Sb and Antimony–Lead using present
Fig. 5. Variable height of inclusion in the unit cell with concentration of dis-
persed phase for Bismuth–Tin system (α = 8.64).

Fig. 6. Variable height of inclusion in the unit cell with concentration of dis-
persed phase for Cadmium–Lead system (α = 0.3542).

Fig. 7. Non-dimensional effective conductivity as a function of concentration
of dispersed phase for Bi–Bi2Pb system (α = 4.198).

model. The variation of non-dimensional conductivity and vari-
able height of inclusion in the unit cell with the concentra-
tion for Bi–Bi2Pb system are respectively shown in Figs. 7
and 8. For the system like Bi–Bi2Pb [19], the composition
of the Bismuth is negligibly different from pure Bismuth, so
the Bismuth is saturated with Tin. The Tin conductivity is ten
times more than Bismuth conductivity. So, Tin is acting as
a conductor and the Bismuth is acting as an insulator. The
data obtained from model have average deviation of about
6.86% from the experimental values. The average deviations
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Fig. 8. Variable height of inclusion in the unit cell with concentration of dis-
persed phase for Bi–Bi2Pb system (α = 4.198).

Fig. 9. Non-dimensional effective conductivity as a function of concentration
of dispersed phase for Mg2Pb–Pb system (α = 8.5358).

Fig. 10. Variable height of inclusion in the unit cell with concentration of dis-
persed phase for Mg2Pb–Pb system (α = 8.5358).

from the experimental data for Bruggeman, Raghavan and Mar-
tin and Zehner–Schlunder models have been predicted to be
9.08%, 6.88% and 9.48% respectively. A comparison of present
model with the other models has been carried out for mix-
tures like Bismuth–Tin and Mg2Pb–Pb (Figs. 3 and 9). The
predicted values deviate from the experimental results about
7.53% for Bismuth–Tin system [20] and 8.05% for Mg2Pb–Pb
system [21]. The average deviation for Bruggeman, Raghavan–
Martin and Zehner–Schlunder are calculated to be 22.27%,
9.02% and 15.42% respectively for Bismuth–Tin system and
11.48%, 11.00% and 14.45% respectively for Mg2Pb–Pb sys-
tem.

The mixture like Cadmium–Lead (pure cadmium mixed
with pure lead), the proposed model deviates with experimental
Fig. 11. Non-dimensional effective conductivity as a function of concentration
of dispersed phase for Copper–Ferrous system (α = 0.3055).

Fig. 12. Variable height of inclusion in the unit cell with concentration of dis-
persed phase for Copper–Ferrous system (α = 0.3055).

Fig. 13. Non-dimensional effective conductivity as a function of concentration
of dispersed phase for Cu2Sb–Sb system (α = 0.2727).

values [20] with in the range of 3.96%. The average deviation
for existing models [3,5,9] is 3.57%, 3.86% and 2.20% respec-
tively. For the mixtures like Copper–Ferrous [22], Cu2Sb–Sb
[23] and Antimony–Lead [20], the proposed correlation for
predicted K deviated from the experimental results with a de-
viation of 4.65%, 3.50% and 1.94% respectively (Figs. 11, 13
and 15). The average deviation for other models [3,5,9] are
2.71%, 2.74% and 1.30% for Copper–Ferrous system, 8.47%,
1.99% and 3.3% for Cu2Sb–Sb system and 3.61%, 1.37% and
1.85% for Antimony–Lead system. The effect of concentra-
tion of the dispersed phase on variable height of inclusion in
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Fig. 14. Variable height of inclusion in the unit cell with concentration of dis-
persed phase for Cu2Sb–Sb system (α = 0.2727).

Fig. 15. Non-dimensional effective conductivity as a function of concentration
of dispersed phase for Antimony–Lead system (α = 0.4168).

Fig. 16. Variable height of inclusion in the unit cell with concentration of dis-
persed phase for Antimony–Lead system (α = 0.4168).

the unit cell has been studied for the mixtures like Bi–Bi2Pb,
Mg2Pb–Pb, Copper–Ferrous, Cu2Sb–Sb and Antimony–Lead
(Figs. 8, 10, 12, 14 and 16). It is observed that with out any
prediction, α > 1 the present line is in between parallel and
Maxwell line, similarly for α < 1 the present line is in be-
tween Maxwell and series line. The results obtained from the
model are in reasonable agreement with the other models and
the deviation from the experimental values for various binary
metallic mixtures is about 8%. The proposed model may ef-
fectively be used to predict all class of binary metallic mix-
tures.
4. Conclusions

For concentration varying from 0.10 to 0.9 and for lower
α value (α � 20), a model based on unit cell approach (for
constant isotherm) has been proposed. The field solution ap-
proach is applicable for concentration varying from 0.1 to 0.9
for medium conductivity ratio (α > 20). The relation between
non-dimensional conductivity with the effect of concentration
shows the physical corrections of the model and the effect of
concentration with variable height of inclusion in the unit cell
shows the transport properties of the mixtures. The model is
applicable for various types of mixtures and it shows excel-
lent agreement with the experimental results. The proposed
model was compared with the standard models like Bruggeman,
Zehner–Schlunder and Raghavan–Martin. For mixtures like Bi–
Bi2Pb, Bismuth–Tin and Mg2Pb–Pb, the proposed model has
shown better results than other models, for the remaining mix-
tures the proposed model is in fair agreement with the other
models.
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